China Custom Transmission Conveyor DIN Standard Sprockets Industrial Gear Teeth Rack Bevel Bicycle Stainless Transmission Drive Part Carbon Steel Plate Idler Wheel Sprockets

Product Description

SPROCKET  5/8” X 3/8”  10B SERIES SPROCKETS
 

For Chain Acc.to DIN8187 ISO/R 606
Tooth Radius  r3 16.0mm
Radius Width C 1.6mm
Tooth Width b1 9.0mm
Tooth Width B1 9.1mm
Tooth Width B2 25.5mm
Tooth Width B3 42.1mm
10B SERIES ROLLER CHAINS  
Pitch 15.875 mm
Internal Width 9.65 mm
Roller Diameter 10.16 mm

 

 

Z de dp SIMPLEX DUPLEX TRIPLEX
dm D1 A dm D2 A dm D3 A
8 47.0 41.48 25 10 25 25 12 40 25 12 55
9 52.6 46.42 30 10 25 30 12 40 30 12 55
10 57.5 51.37 35 10 25 35 12 40 35 12 55
11 63.0 56.34 37 12 30 39 14 40 39 16 55
12 68.0 61.34 42 12 30 44 14 40 44 16 55
13 73.0 66.32 47 12 30 49 14 40 49 16 55
14 78.0 71.34 52 12 30 54 14 40 54 16 55
15 83.0 76.36 57 12 30 59 14 40 59 16 55
16 88.0 81.37 60 12 30 64 16 45 64 16 60
17 93.0 86.39 60 12 30 69 16 45 69 16 60
18 98.3 91.42 70 14 30 74 16 45 74 16 60
19 103.3 96.45 70 14 30 79 16 45 79 16 60
20 108.4 101.49 75 14 30 84 16 45 84 16 60
21 113.4 106.52 75 16 30 85 16 45 85 20 60
22 118.0 111.55 80 16 30 90 16 45 90 20 60
23 123.5 116.58 80 16 30 95 16 45 95 20 60
24 128.3 121.62 80 16 30 100 16 45 100 20 60
25 134.0 126.66 80 16 30 105 16 45 105 20 60
26 139.0 131.70 85 20 35 110 20 45 110 20 60
27 144.0 136.75 85 20 35 110 20 45 110 20 60
28 148.7 141.78 90 20 35 115 20 45 115 20 60
29 153.8 146.83 90 20 35 115 20 45 115 20 60
30 158.8 151.87 90 20 35 120 20 45 120 20 60
31 163.9 156.92 95 20 35 120 20 45 120 20 60
32 168.9 161.95 95 20 35 120 20 45 120 20 60
33 174.5 167.00 95 20 35 120 20 45 120 20 60
34 179.0 172.05 95 20 35 120 20 45 120 20 60
35 184.1 177.10 95 20 35 120 20 45 120 20 60
36 189.1 182.15 100 20 35 120 20 45 120 25 60
37 194.2 187.20 100 20 35 120 20 45 120 25 60
38 199.2 192.24 100 20 35 120 20 45 120 25 60
39 204.2 197.29 100 20 35 120 20 45 120 25 60
40 209.3 202.34 100 20 35 120 20 45 120 25 60
41 214.8 207.38 *100 20 40 120 20 50 *130 25 60
42 2,199 212.43 *100 20 40 120 20 50 *130 25 60
43 224.9 217.48 *100 20 40 120 20 50 *130 25 60
44 230.0 222.53 *100 20 40 120 20 50 *130 25 60
45 235.0 227.58 *100 20 40 *120 20 50 *130 25 60
46 240.1 232.63 *100 20 40 *120 20 50 *130 25 60
47 245.1 237.68 *100 20 40 *120 20 50 *130 25 60
48 250.2 242.73 *100 20 40 *120 20 50 *130 25 60
49 255.2 247.78 *100 20 40 *120 20 50 *130 25 60
50 260.3 252.82 *100 20 40 *120 20 50 *130 25 60
51 265.3 257.87 *100 20 40 *120 20 50 *130 25 60
52 270.4 262.92 *100 20 40 *120 20 50 *130 25 60
53 275.4 267.97 *100 20 40 *120 20 50 *130 25 60
54 280.5 273.03 *100 20 40 *120 20 50 *130 25 60
55 285.5 278.08 *100 20 40 *120 20 50 *130 25 60
56 290.6 283.13 *100 20 40 *120 20 50 *130 25 60
57 296.0 288.18 *100 20 40 *120 20 50 *130 25 60
58 300.7 293.23 *100 20 43 *120 20 57 *130 25 64
59 305.7 298.28 *100 20 43 *120 20 57 *130 25 64
60 310.8 303.33 *100 20 43 *120 20 57 *130 25 64
62 321.4 313.43 *100 20 43 *120 20 57 *130 25 64
64 331.5 323.53 *100 20 43 *120 20 57 *130 25 67
65 336.5 328.58 *100 20 43 *120 20 57 *130 25 67
66 341.6 333.64 *100 20 43 *120 20 57 *130 25 67
68 351.7 343.74 *100 20 43 *120 20 57 *130 25 67
70 361.8 353.84 *100 20 43 *120 20 57 *130 25 67
72 371.9 363.94 *100 20 43 *120 20 57 *130 25 67
75 387.1 379.10 *100 20 43 *120 20 57 *130 25 67
76 392.1 384.15 *100 20 43 *120 20 57 *130 25 67
78 402.2 394.25 *100 20 43 *120 20 57 *130 25 67
80 412.3 404.36 *100 20 43 *130 20 57 *130 25 67
85 437.6 429.62 *100 20 50 *130 20 58 *130 25 67
90 462.8 454.88 *100 20 50 *130 20 58 *130 25 67
95 488.5 480.14 *100 20 50 *130 20 58 *130 25 67
100 513.4 505.40 *100 20 50 *130 20 58 *130 25 67
110 563.9 555.92 *100 20 50 *130 20 58 *130 25 67
114 584.1 576.13 *100 20 50 *130 20 58 *130 25 67
120 614.4 606.45 *100 20 50 *130 20 58 *130 25 67
125 639.7 631.51 *100 20 50 *130 20 58 *130 25 67

Notice: *welding hub

BASIC INFO.
 

Product name  DIN ISO Standard Sprocket for Roller Chain
Materials Available  1. Stainless Steel: SS304, SS316, etc
2. Alloy Steel: C45, 45Mn, 42CrMo, 20CrMo, etc
3. OEM according to your request
Surface Treatment Heat treatment, Quenching treatment, High frequency normalizing treatment, Polishing, Electrophoresis paint processing, Anodic oxidation treatment, etc
Characteristic Fire Resistant, Oil Resistant, Heat Resistant, CZPT resistance, Oxidative resistance, Corrosion resistance, etc
Design criterion ISO DIN ANSI & Customer Drawings
Size Customer Drawings & ISO standard 
Application Industrial transmission equipment
Package Wooden Case / Container and pallet, or made-to-order
Certificate ISO9001: 2008 
Advantage Quality first, Service first, Competitive price, Fast delivery
Delivery Time 20 days for samples. 45 days for official order.

INSTALLATION AND USING

The chain  spoket, as a drive or deflection for chains, has pockets to hold the chain links with a D-profile cross section with flat side surfaces  parallel to the centre plane of the chain links, and outer surfaces at right angles to the chain link centre plane. The chain links are pressed firmly against the outer surfaces and each of the side surfaces by the angled laying surfaces at the base of the pockets, and also the support surfaces of the wheel body together with the end sides of the webs formed by the leading and trailing walls of the pocket.

NOTICE

When fitting new chainwheels it is very important that a new chain is fitted at the same time, and vice versa. Using an old chain with new sprockets, or a new chain with old sprockets will cause rapid wear.

It is important if you are installing the chainwheels yourself to have the factory service manual specific to your model. Our chainwheels are made to be a direct replacement for your OEM chainwheels and as such, the installation should be performed according to your models service manual.

During use a chain will stretch (i.e. the pins will wear causing extension of the chain). Using a chain which has been stretched more than the above maximum allowance causes the chain to ride up the teeth of the sprocket. This causes damage to the tips of the chainwheels teeth, as the force transmitted by the chain is transmitted entirely through the top of the tooth, rather than the whole tooth. This results in severe wearing of the chainwheel.
 

FOR CHAIN STHangZhouRDS

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25

ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Pitch (inches) Pitch expressed
in eighths
ANSI standard
chain number
Width (inches)
14 28 25 18
38 38 35 316
12 48 41 14
12 48 40 516
58 58 50 38
34 68 60 12
1 88 80 58

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
 A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.

 

WHY CHOOSE US 

1. Reliable Quality Assurance System
2. Cutting-Edge Computer-Controlled CNC Machines
3. Bespoke Solutions from Highly Experienced Specialists
4. Customization and OEM Available for Specific Application
5. Extensive Inventory of Spare Parts and Accessories
6. Well-Developed CZPT Marketing Network
7. Efficient After-Sale Service System

 

The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.

We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CZPT range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

 

 

Standard Or Nonstandard: Standard, Nonstandard
Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car, Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car, Mining Machinery, Sugar Machinery
Hardness: Hardened Tooth Surface
Manufacturing Method: Cut Gear, Rolling Gear
Toothed Portion Shape: Spur Gear
Material: Alloy, Stainless Steel
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

drive sprocket

Can drive sprockets be used in underwater or harsh environmental conditions?

Whether drive sprockets can be used in underwater or harsh environmental conditions depends on the material and design of the sprocket, as well as the specific conditions of the application. Here are some considerations:

  • 1. Stainless Steel Sprockets: Stainless steel sprockets are highly resistant to corrosion and can be used in various harsh environments, including underwater applications. They are commonly used in marine equipment and other outdoor applications exposed to moisture and humidity.
  • 2. Coated or Plated Sprockets: Some sprockets are coated or plated with materials like zinc, nickel, or chrome to enhance their corrosion resistance. These sprockets can also be used in mildly harsh environments but may have limitations in prolonged underwater use.
  • 3. Sealed or Shielded Bearings: In some applications, especially those exposed to dust, dirt, or debris, sprockets with sealed or shielded bearings are used to protect the internal components from contamination.
  • 4. Specialized Materials: In extremely harsh environments, such as underwater mining or deep-sea operations, specialized materials with high corrosion resistance and durability may be required.

It’s essential to consider the specific conditions of your application when selecting drive sprockets for use in underwater or harsh environments. Regular maintenance and proper lubrication are also critical to extending the lifespan of sprockets in such conditions. Additionally, consulting with experts or manufacturers with experience in supplying sprockets for similar environments can help you make the right choice for your application.

drive sprocket

What are the best practices for adjusting and maintaining drive sprockets for optimal performance?

Proper adjustment and maintenance of drive sprockets are crucial for ensuring optimal performance, longevity, and safe operation of the power transmission system. Here are some best practices to follow:

  • Regular Inspection: Conduct regular visual inspections of the sprockets and the entire power transmission system. Look for signs of wear, damage, or misalignment. Identifying and addressing issues early can prevent costly repairs and downtime.
  • Lubrication: Proper lubrication is essential for reducing friction and wear between the sprockets and the chain or belt. Follow the manufacturer’s guidelines for the type and frequency of lubrication. Consider the operating environment, temperature, and load conditions when selecting the lubricant.
  • Alignment: Ensure proper alignment of the sprockets with each other and with other components of the system, such as shafts and bearings. Misalignment can lead to premature wear and decreased efficiency. Use alignment tools and techniques to achieve accurate alignment.
  • Tension: Maintain the correct tension in the chain or belt. Too much tension can cause excessive wear, while too little tension can lead to slippage and power loss. Follow the manufacturer’s recommendations for proper tensioning.
  • Cleanliness: Keep the sprockets and chain or belt clean from dirt, debris, and contaminants. Regularly clean the components and the surrounding area to prevent abrasive particles from accelerating wear.
  • Replace Worn Components: Monitor the wear on the sprockets and the chain or belt. Replace any components that have reached their wear limits to prevent further damage to the system and maintain optimal performance.
  • Use Quality Components: Invest in high-quality sprockets, chains, and belts that are suitable for the specific application and operating conditions. Inferior components may wear more quickly and compromise the overall performance of the system.
  • Temperature Considerations: If operating in extreme temperature conditions, choose materials and lubricants that can withstand the temperature range. High temperatures can accelerate wear and affect the performance of the system.
  • Training and Safety: Ensure that personnel responsible for adjusting and maintaining the drive sprockets are properly trained and follow safety protocols. Safety should always be a top priority during maintenance procedures.

By following these best practices, you can optimize the performance, efficiency, and service life of your drive sprockets and power transmission system, reducing the risk of unexpected breakdowns and improving the overall reliability of your machinery and equipment.

drive sprocket

How do drive sprockets work in conjunction with chains and other components?

In a mechanical power transmission system, drive sprockets play a vital role in working with chains and other components to transfer rotational motion and power from one shaft to another. The interaction between drive sprockets, chains, and additional components is essential for the efficient functioning of the system.

1. Chain Engagement: Drive sprockets are designed with teeth that correspond to the pitch of the chain they are intended to work with. When power is applied to the drive sprocket, it rotates, causing the teeth to engage with the links of the chain. This engagement creates a positive drive system, where the sprocket and chain move in sync, transmitting motion and power along the chain’s length.

2. Chain Wrap: The chain wraps partially around the circumference of the drive sprocket. The degree of wrap, known as the chain wrap angle, influences the efficiency of power transmission and the sprocket’s ability to maintain a secure grip on the chain. A larger chain wrap angle generally results in better power transmission and reduced likelihood of chain slippage.

3. Chain Tension: To maintain proper chain engagement, tension must be applied to the chain. Drive sprockets are often mounted on an adjustable shaft or a tensioner to ensure the chain remains tight. Proper chain tension prevents excess slack, reduces vibration, and minimizes the risk of the chain disengaging from the sprocket.

4. Interaction with Driven Sprockets: In many systems, the drive sprocket is connected to a driven sprocket through a continuous loop of chain. When the drive sprocket rotates, it pulls the chain along, causing the driven sprocket to rotate as well. This allows the transmission of motion and power from the input shaft (connected to the drive sprocket) to the output shaft (connected to the driven sprocket).

5. Gear Ratio: The combination of the number of teeth on the drive sprocket and the driven sprocket determines the gear ratio of the system. The gear ratio affects the speed and torque output of the mechanical system. By altering the size of the sprockets, the gear ratio can be modified to suit specific operational requirements.

6. Lubrication: Proper lubrication of the chain-sprocket interface is crucial for reducing friction, wear, and noise. Lubricants ensure smooth movement of the chain on the sprocket, thereby enhancing the overall efficiency and lifespan of the system.

Overall, drive sprockets, in conjunction with chains and other components, facilitate the efficient and reliable transfer of power in mechanical systems. Their precise design, engagement with the chain, and interaction with driven sprockets ensure smooth and controlled motion, making them essential components in a wide range of applications.

China Custom Transmission Conveyor DIN Standard Sprockets Industrial Gear Teeth Rack Bevel Bicycle Stainless Transmission Drive Part Carbon Steel Plate Idler Wheel Sprockets  China Custom Transmission Conveyor DIN Standard Sprockets Industrial Gear Teeth Rack Bevel Bicycle Stainless Transmission Drive Part Carbon Steel Plate Idler Wheel Sprockets
editor by CX 2023-08-09

Drive Sprocket

As one of the leading drive sprocket manufacturers, suppliers, and exporters of mechanical products, We offer drive sprocket and many other products.

Please contact us for details.

Manufacturer supplier exporter of the drive sprocket.

Recent Posts